2D‐SnP3 as Promising Candidate for NO Sensor with High Sensitivity and Selectivity at Room Temperature: A First‐Principles Investigation

Author:

Sara Ahmed A.12,Cai Xinyong1,Li Xiumei1,Wang Hongyan1ORCID

Affiliation:

1. School of Physical Science and Technology Key Laboratory of Advanced Technology of Materials Ministry of Education of China Southwest Jiaotong University Chengdu 610031 China

2. School of Physics and applied physics Faculty of Science and Technology Al Neelain University Khartoum 12702 Sudan

Abstract

Ultrasensitive gas sensors have been fabricated depending on novel 2D materials. The adsorption behavior of diatomic molecules (H2, HF, N2, CO, O2, and NO) on the 2D‐SnP3 monolayer is investigated by utilizing first‐principle calculations for seeking the applications of sensing and detecting gases. H2 molecule displays weak adsorption effects on the SnP3 monolayer, while N2, CO, HF, and O2 show a moderate adsorption effect. NO molecule tends to chemisorb, resulting in a significant change transition for the electrical conductivity of the SnP3 monolayer. The calculation results of adsorption energies, charge transfers, and work function indicate that the SnP3 monolayer can be a promising candidate as a room‐temperature NO gas sensing 2D material due to its high selectivity, conspicuous sensitivity, and short recovery time. This study can guide the feasibility of using SnP3 monolayer as a NO gas sensor in further experimental applications.

Funder

Sichuan Province Science and Technology Support Program

Publisher

Wiley

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3