Global deep learning optimization of chemical exchange saturation transfer magnetic resonance fingerprinting acquisition schedule

Author:

Cohen Ouri1,Otazo Ricardo12ORCID

Affiliation:

1. Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA

2. Department of Radiology Memorial Sloan Kettering Cancer Center New York New York USA

Abstract

AbstractChemical exchange saturation transfer (CEST) MRI is a promising molecular imaging technique but suffers from long scan times and complicated processing. CEST was recently combined with magnetic resonance fingerprinting (MRF) to address these shortcomings. However, the CEST‐MRF signal depends on multiple acquisition and tissue parameters so selecting an optimal acquisition schedule is challenging. In this work, we propose a novel dual‐network deep learning framework to optimize the CEST‐MRF acquisition schedule. The quality of the optimized schedule was assessed in a digital brain phantom and compared with alternate deep learning optimization approaches. The effect of schedule length on the reconstruction error was also investigated. A healthy subject was scanned with optimized and random schedules and with a conventional CEST sequence for comparison. The optimized schedule was also tested in a subject with metastatic renal cell carcinoma. Reproducibility was assessed via test–retest experiments and the concordance correlation coefficient calculated for white matter (WM) and grey matter (GM). The optimized schedule was 12% shorter but yielded equal or lower normalized root mean square error for all parameters. The proposed optimization also provided a lower error compared with alternate methodologies. Longer schedules generally yielded lower error. In vivo maps obtained with the optimized schedule showed reduced noise and improved delineation of GM and WM. CEST curves synthesized from the optimized parameters were highly correlated (r = 0.99) with measured conventional CEST. The mean concordance correlation coefficient in WM/GM for all tissue parameters was 0.990/0.978 for the optimized schedule but only 0.979/0.975 for the random schedule. The proposed schedule optimization is widely applicable to MRF pulse sequences and provides accurate and reproducible tissue maps with reduced noise at a shorter scan time than a randomly generated schedule.

Publisher

Wiley

Subject

Spectroscopy,Radiology, Nuclear Medicine and imaging,Molecular Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3