CO2 capture and dissociation on novel Ni/CaO bifunctional materials: A theoretical study

Author:

Wang Hao12,Li Rongrong1,Wang Enna1,Zhu Zhengtong1,Zhang Jianbin1ORCID

Affiliation:

1. Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China

2. School of Future Technology University of Chinese Academy of Science Beijing P. R. China

Abstract

AbstractCalcium‐looping dry reforming of methane (CaL‐DRM) strategy mainly relies on novel Ni/CaO‐based dual‐functional materials, in which its microscopic mechanism remains to be further explored. In this work, molecular simulation of the adsorption and dissociation processes of CO2 was performed on the surface of Ni/CaO dual‐functional materials (DFMs) based on density functional theory (DFT). The analyses of electron density, partial density of states, and formation energy suggest that the Ni/CaO model has higher stability and activity than the CaO model. The analyses of the evolution of chemical bonds, adsorption energy, density of states, and charge population after the adsorption of CO2 on the CaO surface and Ni/CaO shows that the modification with Ni made the adsorption of CO2 on Ni/CaO more stable. The transient calculations indicate that the path with the lowest activation energy is the H‐mediated dissociation path of chemisorption carboxyl COOH* as an intermediate, which is the possible dissociation path of CO2 on the surface of Ni/CaO DFMs. The dissociation of COOH* into CO* and OH* is the rate‐controlling step of the reaction. The DFT results demonstrate that the doping of Ni during the preparation of CaO materials can realize and enhance the CaL‐DRM processes, which provide a theoretical basis for the optimum preparation of Ni/CaO‐based DFMs. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3