Groundwater, salt and contaminant transport in a coastal aquifer system with a low‐permeability layer in the intertidal zone

Author:

Li Congrui1,Gibbes Badin1,Liu Yue1ORCID,Liu Xiaocheng1,Zhang Chenming1ORCID

Affiliation:

1. School of Civil Engineering, The University of Queensland The University of Queensland St. Lucia Queensland Australia

Abstract

AbstractLow‐permeability layer (LPL), formed by natural deposit or artificial reclamation and commonly found below the intertidal zone of coastal groundwater system, can retard the ingress of seawater and contaminants, and shorten the travel time of the land‐sourced contaminant to the marine environment compared with a homogenous sandy coastal aquifer. However, there is limited understanding on how an intertidal LPL, a condition occurred in a coastal aquifer at Moreton Bay, Australia, influences the groundwater and contaminant transport across the shallow beach aquifer system. We characterized the aquifer hydrological parameters, monitored the in situ groundwater heads, and constructed a 2‐D numerical model to analyses the cross‐shore hydrological processes in this stratified system. The calibrated model suggests that in the lower aquifer, the inland‐source fresh groundwater flowed horizontally towards the sea, upwelled along the freshwater–saltwater interface, and exited the aquifer at the shore below the LPL. Whereas in the upper aquifer, the tidally driven seawater circulation formed a barrier that prevented fresh groundwater from horizontal transport and discharge to the beach above the LPL, thereby directing its leakage to the lower aquifer. A contaminant represented by a conservative tracer was ‘released’ the upper aquifer in the model and results showed that the spreading extent of the contaminant plume, the maximum rate of contaminant discharge to the ocean, and its plume length decreased compared with a simulation case in a homogenous sandy aquifer. Sensitivity analysis was also conducted to investigate the characteristics of the LPL, including its continuity and hydraulic conductivity, which were found to vary along the beach at Moreton Bay. The result shows that with a lower hydraulic conductivity and continuous layer of LPL reduced the groundwater exchange and contaminant transport between upper and lower aquifer. The findings from the combined field and modelling investigations on the impact of an intertidal LPL on coastal aquifer systems highlight its significant implications to alter the groundwater and mass transport across the land–ocean interface.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3