An innovative I‐shaped low‐yield steel shear damper directly connected to the concentrically braced frame

Author:

Kontoni Denise‐Penelope N.12,Ghamari Ali3,Kheiri Javad3,Ilia Georgios2

Affiliation:

1. Department of Civil Engineering School of Engineering, University of the Peloponnese GR‐26334 Patras Greece

2. School of Science and Technology, Hellenic Open University GR‐26335 Patras Greece

3. Department of Civil Engineering, Ilam Branch Islamic Azad University Ilam Iran

Abstract

AbstractShear dampers are known as famous seismic passive energy devices due to their suitable performance against seismic loading to improve the behavior of Concentrically Braced Frames (CBFs). The CBF system suffers from low ductility due to its compression member's susceptibility to buckling. By adding the shear dampers directly to the diagonal element members of the CBF, the dampers prevent the bucking of the CBF and improve the behavior of the system. Although the dampers pertain to high energy dissipation capacity, they reduce the ultimate strength and elastic stiffness of the system. To overcome the shortcoming, in this paper, utilizing low‐yield point steel to create an I‐shaped damper is proposed and investigated parametrically and numerically by the Finite Element Method (FEM). This damper is directly connected to the CBF's diagonal member. The results indicated that by using the proposed I‐shaped damper, the ultimate strength, elastic stiffness, and energy dissipation of the system are enhanced. Also, the damper prevents the bucking of the CBF, which causes the damages to be limited in the damper, and the CBF to remain in the elastic zone. Also, required equations were suggested to design the system.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3