Toward high‐efficiency photovoltaics‐assisted electrochemical and photoelectrochemical CO2 reduction: Strategy and challenge

Author:

Cho Jin Hyuk1,Ma Joonhee1,Kim Soo Young1ORCID

Affiliation:

1. Department of Materials Science and Engineering Korea University Seoul Republic of Korea

Abstract

AbstractThe realization of a complete techno‐economy through a significant carbon dioxide (CO2) reduction in the atmosphere has been explored to promote a low‐carbon economy in various ways. CO2 reduction reactions (CO2RRs) can be induced using sustainable energy, including electric and solar energy, using systems such as electrochemical (EC) CO2RR and photoelectrochemical (PEC) systems. This study summarizes various fabrication strategies for non‐noble metal, copper‐based, and metal–organic framework‐based catalysts with excellent Faradaic efficiency (FE) for target carbon compounds, and for noble metals with low overvoltage. Although EC and PEC systems achieve high energy conversion efficiency with excellent catalysts, they still require external power and lack complete bias–free operation. Therefore, photovoltaics, which can overcome the limitations of these systems, have been introduced. The utilization of silicon and perovskite‐based solar cells for photovoltaics‐assisted EC (PV‐EC) and photovoltaics‐assisted PEC (PV‐PEC) CO2RR systems are cost‐efficient, and the III–V semiconductor photoabsorbers achieved high solar‐to‐carbon efficiency. This work focuses on PV‐EC and PV‐PEC CO2RR systems and their components and then summarizes the special cell configurations, including the tandem and stacked structures. Additionally, the study discusses current issues, such as low energy conversion, expensive PV, theoretical limits, and industrial scale–up, along with proposed solutions.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3