Designing advanced S‐scheme CdS QDs/La‐Bi2WO6 photocatalysts for efficient degradation of RhB

Author:

Ning Jing1,Zhang Bohang1,Siqin Letu2,Liu Gaihui1,Wu Qiao3,Xue Suqin3,Shao Tingting1,Zhang Fuchun1ORCID,Zhang Weibin4,Liu Xinghui56ORCID

Affiliation:

1. School of Physics and Electronic Information Yan'an University Yan'an People's Republic of China

2. Key Laboratory of Semiconductor Photovoltaic at Universities of Inner Mongolia Autonomous Region, School of Physical Science and Technology Inner Mongolia University Huhhot Inner Mongolia People's Republic of China

3. Network Information Center Yan'an University Yan'an People's Republic of China

4. Yunnan Key Laboratory of Opto‐Electronic Information Technology College of Physics and Electronics Information Yunnan Normal University Kunming People's Republic of China

5. Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong People's Republic of China

6. Department of Materials Physics Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences (SIMTS) Chennai Tamil Nadu India

Abstract

AbstractFinding effective strategies to design efficient photocatalysts and decompose refractory organic compounds in wastewater is a challenging problem. Herein, by coupling element doping and constructing heterostructures, S‐scheme CdS QDs/La‐Bi2WO6 (CS/LBWO) photocatalysts are designed and synthesized by a simple hydrothermal method. As a result, the RhB degradation efficiency of the optimized 5% CS/LBWO reached 99% within 70 min of illumination with excellent stability and recyclability. CS/LBWO shows improvement in the adsorption range of visible light and promotes electron–hole pair generation/migration/separation, attributing the superior degradation performance. The degradation RhB mechanism is proposed by a free radical capture experiment, electron paramagnetic resonance, and high‐performance liquid chromatography‐mass spectrometry results, indicating that h+ and •O2 play a significant role during four degradation processes: de‐ethylation, chromophore cleavage, ring opening, and mineralization. Based on in situ irradiated X‐ray photoelectron spectroscopy, Mulliken electronegativity theory, and the work function results, the S‐scheme heterojunction of CS/LBWO promotes the transfer of photogenerated electron–hole pairs and promotes the generation of reactive radicals. This work not only reports that 5% CS/LBWO is a promising photocatalyst for degradation experiments but also provides an approach to design advanced photocatalysts by coupling element doping and constructing heterostructures.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3