Krill herd optimization algorithm with deep convolutional neural network fostered breast cancer classification using mammogram images

Author:

P Pratheep Kumar1ORCID,V Mary Amala Bai2,Krish Ram P.3

Affiliation:

1. Computer Engineering Department Government Polytechnic College Pala Kottayam India

2. Department of Information Technology Noorul Islam Centre for Higher Education Takkalai India

3. School of Computing and Data Science Sai University Chennai India

Abstract

SummaryIn this paper proposes a Krill Herd Optimization algorithm with Deep Convolutional neural network fostered Breast Cancer Classification using Mammogram Images (BC‐APPDRC‐DCNN‐KHO). Here, the input images are taken from Real time and MAMMOSET datasets. These images are pre‐processed using Altered Phase Preserving Dynamic Range Compression (APPDRC) technique. This APPDRC is applied for preserving local features, compressing dynamic range of images, and enhancing the speckle noise filtering, these are all necessary for better boundary detection. Then, the Pre‐processed images are classified using Deep Convolutional neural network (DCNN). The DCNN weight parameters are optimized based on Krill Herd Optimization algorithm. The Proposed BCC‐DCNN‐KHO‐MI method classifies the input breast cancer imageries into 3 categories: benign, malignant, and normal. The proposed BCC‐DCNN‐KHO‐MI method in Real time dataset attains 18.505%, 19.45%, 16.19%, 17.56% and 16.19% higher accuracy; 15.38%, 12.06%, 12.71%, 26.62% and 18.902% higher Precision; 3.12%, 10.52%, 13.57%, 22.75% and 14.93% higher F‐score, 59.56%, 41.25%, 56.47%, 42.36% and 37.27% lower computation time; 23.87%, 21.87%, 32.87%, 42.76% and 21.05% higher AUC compared with the existing methods, like BCC‐Google Net‐MI, BCC‐Visual Geometry Group Network‐MI, BCC‐Residual Networks‐MI, BC‐RERNN‐LOA‐MI and BC‐CNN‐MI respectively.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3