Statistical shape modeling of the large acetabular defect in hip revision surgery

Author:

De Angelis Sara1ORCID,Henckel Johann2,Bergiers Sean1,Hothi Harry23ORCID,Di Laura Anna23,Hart Alister124ORCID

Affiliation:

1. Institute of Orthopaedics and Musculoskeletal Science University College London London UK

2. Royal National Orthopaedic Hospital NHS Trust Stanmore UK

3. Department of Mechanical Engineering University College London London UK

4. Cleveland Clinic London UK

Abstract

AbstractThe assessment of three‐dimensional bony defects is important to inform the surgical planning of hip reconstruction. Mirroring of the contralateral side has been previously used to measure the hip center of rotation (CoR). However, the contralateral side may not be useful when diseased or replaced. Statistical Shape Models (SSMs) can aid reconstruction of patient anatomy. Previous studies have been limited to computational models only or small patient cohorts. We used SSM as a tool to help derive landmarks that are often absent in hip joints of patients with large acetabular defects. Our aim was to compare the reconstructed pelvis with patients who have previously undergone hip revision. This retrospective cohort study involved 38 patients with Paprosky type IIIB defects. An SSM was built on 50 healthy pelvises and used to virtually reconstruct the native pelvic morphology for all cases. The outcome measures were the difference in CoR for (1) SSM versus diseased hip, (2) SSM versus plan, and (3) SSM versus contralateral healthy hip. The median differences in CoR were 31.17 mm (interquartile range [IQR]: 43.80–19.87 mm), 8.53 mm (IQR: 12.76–5.74 mm), and 7.84 mm (IQR: 10.13–5.13 mm), respectively. No statistical difference (p > 0.05) was found between the SSM versus plan and the SSM versus contralateral CoRs. Our findings show that the SSM model can be used to reconstruct the absent bony landmarks of patients with significant lysis regardless of the defect severity, hence aiding the surgical planning of hip reconstruction and implant design.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3