A proposed approach to defining per‐ and polyfluoroalkyl substances (PFAS) based on molecular structure and formula

Author:

Gaines Linda G. T.1ORCID,Sinclair Gabriel2,Williams Antony J.3ORCID

Affiliation:

1. Office of Superfund Remediation and Technology Innovation, Office of Land and Emergency Management US Environmental Protection Agency DC Washington USA

2. ORAU Student Services Contractor to Center for Computational Toxicology and Exposure, Office of Research and Development US Environmental Protection Agency NC Research Triangle Park USA

3. Office of Research & Development, Center for Computational Toxicology & Exposure US Environmental Protection Agency NC Research Triangle Park USA

Abstract

AbstractVarious groups and researchers, including the authors of this work, have proposed different definitions of what constitutes per‐ and polyfluoroalkyl substances (PFAS). The different definitions are all based on a structural definition. Although a structural definition is reasonable, such an approach is difficult to execute if the intent is to narrow or refine the definition. This approach can also lead to inexplicable demarcations of what are and what are not PFAS. Our objective was to create a narrow, simple PFAS definition that allows interested groups to communicate with a common understanding and will also serve as a starting point to focus on substances that are of real environmental concern. Our studies have demonstrated that numerous highly fluorinated complex structures exist that make a structure‐based definition difficult. We suggest that a definition based on fractional fluorination expressed as the percentage of fluorine of a molecular formula using atom counting offers advantages. Using a combination of a structure‐based definition and a definition based on the fractional percentage of the molecular formula that is fluorine can provide a more inclusive and succinct definition. Thus, we propose a new definition based on four substructures along with any structures where the molecular formula is 30% fluorine by atom count. Integr Environ Assess Manag 2023;19:1333–1347. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Publisher

Wiley

Subject

General Environmental Science,General Medicine,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3