Using stream dissolved oxygen and light relationships to estimate stream primary production on mountainous headwater stream ecosystems

Author:

Villamizar Sandra R.12,Segura Catalina1ORCID,Warren Dana R.3ORCID

Affiliation:

1. Oregon State University, Forest Engineering Resources and Management Department Corvallis OR USA

2. Universidad Industrial de Santander, Escuela de Ingeniería Civil Bucaramanga Colombia

3. Oregon State University, Department of Forest Ecosystems and Society Corvallis OR USA

Abstract

AbstractHeadwater streams influence the carbon cycle, but their productivity estimation remains challenging. We propose the use of dissolved oxygen data (% saturation, DOsat) and on‐site photosynthetically active radiation (PAR) data to develop DOsat~PAR curves as an analogy to the well‐known photosynthesis–irradiance (P–E) curves. The premise of our research is that although these curves are simple, they provide detailed information of stream ecosystem productivity dynamics. We used data from two streams in the Oregon Coast Range to investigate daily gross primary productivity (GPP). We used properties of the light‐limited portion of the DOsat~PAR regression curves to produce a model to estimate GPP. We found that the slope of the DO–PAR relation varied widely between 1.6 × 10−4 and 0.045 and had strong correlations (r2 > 0.78). The data from one of the two study sites (Oak Creek) was used for model development while the data from the other site (South Fork Mill Creek) was used for model validation. The model's ability to quantify the effects of a discrete storm event on stream productivity was tested by comparing GPP estimates calculated through a Bayesian framework (streamMetabolizer) and our raw data‐driven estimates of GPP which were based on the variability of the DOsat~PAR regression curves. The proposed methodology was successful in estimating GPP in headwaters. We foresee that this method may be used to assess disturbances and construct a baseline understanding of productivity dynamics in other headwater ecosystems that is independent of the methodological challenges of the current stream metabolism models.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3