Development of biobased plasticizers with synergistic effects of plasticization, thermal stabilization, and migration resistance: A review

Author:

Han Yu1,Weng Yunxuan1,Zhang Caili1ORCID

Affiliation:

1. Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China

Abstract

AbstractPlasticizers are widely used in poly(vinyl chloride) (PVC), polylactic acid (PLA), thermoplastic starch (TPS), and other modified powder materials to enhance the flowability, flexibility, and processability of macromolecules. Because of the reprotoxicity of phthalates in animals and humans, certain phthalates have recently been banned in the United States and Europe. Biobased plasticizers from green biomass–derived renewable resources with low toxicity are expected to be a substitute for phthalates. Among a variety of newly developed biobased monomers, cardanol, and isosorbide are the two most promising materials because of their unique structural features. This review summarizes the research progress of cardanol‐ and isosorbide‐based plasticizers with synergistic effects of plasticization, thermal stabilization, and anti‐migration. By summarizing and analyzing the relationship between molecular structure of plasticizer and plasticizing performance, this review can provide theoretical guidance for future research on the design of isosorbide‐ and cardanol‐based plasticizers.Highlights Biobased plasticizers with low toxicity are expected to replace certain phthalates. The plasticizing effect of single biobased plasticizer is not good. Biobased plasticizer with synergistic effects is required. There exists the trade‐off effect between the molecular weight and the compatibility. Epoxidized isosorbide ester can be used as a heat stabilizer.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3