Synergistic fire retardancy of melamine resin modified with pentaerythritol and ammonium polyphosphate in PP

Author:

Li Haoran1,Chen Xiaoping1,Sun Mingmei1,Wu Hongzhi1ORCID,Tang Linsheng1ORCID

Affiliation:

1. College of Chemical Engineering Qingdao University of Science and Technology Qingdao China

Abstract

AbstractThe synergistic fire retardancy of modified melamine resin with pentaerythritol (MF‐PER, a novel green and effective triazine charring agent), and ammonium polyphosphate (APP) in polypropylene was investigated by UL‐94 test, LOI measurement, and cone calorimetry test. It is found that the synergism of MF‐PER is obviously better than pentaerythritol (PER). MF‐PER/APP imparts a fire retardancy mainly by the following mode: in burning process, MF‐PER, and APP are first pyrolyzed respectively into polyols and polyphosphoric acid, which is esterified to form phosphoric ester, and the inert gases make the molten residues foaming; When the temperature increases, and polyphosphoric acid is dehydrated to polymetaphosphoric acid, which dehydrates phosphoric ester to form an intumescent char layer, inducing a fire retardant effect by barrier effect. The graphitization degree of the cone calorimetry test residues of the FR‐PP with MF‐PER is higher than that with PER, which leads to a better synergism.Highlights Melamine formaldehyde resins modified with pentaerythritol (MF‐PER) as a novel triazine charring agent was designed and synthesized. MF‐PER is synthesized by solid phase method and using hexahydroxymethyl melamine (HMM) instead of cyanuric chloride as raw material, so the emission of three wastes in its synthesis process is very little, only a small amount of formaldehyde and water are produced. MF‐PER has excellent synergistic fire retardancy with APP in polypropylene. The highly efficient and environmentally benign charring agent show great potential for developing more efficient and eco‐friendly IFR.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3