Stochastic representation of spatial variability in thaw depth in permafrost boreal forests

Author:

Nakai Taro12ORCID,Hiyama Tetsuya3ORCID,Kotani Ayumi4ORCID,Iijima Yoshihiro5ORCID,Ohta Takeshi4,Maximov Trofim C.6

Affiliation:

1. School of Forestry and Resource Conservation National Taiwan University Taipei Taiwan

2. International Arctic Research Center University of Alaska Fairbanks Fairbanks AK USA

3. Institute for Space‐Earth Environmental Research Nagoya University Nagoya Japan

4. Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan

5. Graduate School and Faculty of Bioresources Mie University Tsu Japan

6. Institute for Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences Yakutsk Russia

Abstract

AbstractA simple stochastic representation of the spatial variability in thaw depth is proposed. Thaw depth distribution measured in the two larch‐type forests in eastern Siberia, Spasskaya Pad and Elgeeii, showed different spatial, seasonal, and interannual variability, respectively. Year‐to‐year variation in active‐layer thickness was minor in Spasskaya Pad compared to Elgeeii. A gamma distribution adequately represented both sites' thaw depth spatial variability as the cumulative probability. Thus, we developed a simple model using the gamma distribution that illustrates the spatial variability in thaw depth at any thawing stage as a function of a given mean thaw depth. A hierarchy of models was introduced that sequentially considered the constant state, linearity, and nonlinearity in the dependence of the rate parameter of the gamma distribution on the mean thaw depth. Although the requirements of the model levels differed between Spasskaya Pad and Elgeeii, the proposed model successfully represented the spatial variability in thaw depth at both sites during different thaw seasons.

Funder

Japan Society for the Promotion of Science

Ministry of Education and Science of the Russian Federation

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Wiley

Subject

Earth-Surface Processes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3