Preptin Deficiency Does Not Protect against High‐Fat Diet‐Induced Metabolic Dysfunction or Bone Loss in Mice

Author:

Buckels Emma J.12,Tan Joey1,Hsu Huai‐Ling1,Zhu Yuting3,Buchanan Christina M.1,Matthews Brya G.12ORCID,Lee Kate L.12ORCID

Affiliation:

1. Department of Molecular Medicine and Pathology University of Auckland Auckland New Zealand

2. Maurice Wilkins Centre for Molecular Biodiscovery University of Auckland Auckland New Zealand

3. Department of Engineering Science University of Auckland Auckland New Zealand

Abstract

ABSTRACTPreptin is derived from the cleavage of the E‐peptide of pro‐insulin‐like growth factor (IGF)‐II and is an insulin secretagogue. Observational studies have linked elevated circulating preptin to metabolic dysfunction in humans; however, a causal role for preptin in metabolic dysfunction has not been established. Additionally, preptin can promote osteoblast proliferation and differentiation, suggesting a link with skeletal health. We previously described a global preptin knockout (KO) model. In this study, we sought to uncover the impact of preptin KO in mice on the response to a moderately high‐fat diet (HFD) and low‐fat diet (LFD). HFD groups had higher weight and fat mass gain, lower trabecular and cortical bone volume and fracture load, and higher liver triglycerides. In males, preptin deficiency led to lower blood glucose than wild‐type (WT) mice under LFD conditions. This was accompanied by differences in bone microarchitecture, including lower trabecular bone volume fraction, trabecular number, and lower cortical thickness. These differences were absent in female mice, although KO females had a HFD‐driven increase in fat mass and liver triglycerides that was absent in WT mice. Female WT mice had increased glucose‐stimulated insulin secretion under HFD conditions that was absent in female KO mice. Overall, preptin may have a detrimental impact on metabolism and a positive impact on bone health in male mice and may protect against liver fat storage in females while enabling islet compensation under HFD conditions. When we consider that serum preptin levels are elevated in humans of both sexes in pathological states in which insulin levels are elevated, the impact of preptin on comorbidity risk needs to be better understood. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Funder

American Society for Bone and Mineral Research

Health Research Council of New Zealand

Maurice and Phyllis Paykel Trust

Publisher

Oxford University Press (OUP)

Subject

Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3