Affiliation:
1. Department of Statistics and Probability Michigan State University East Lansing Michigan USA
2. Department of Industrial & Systems Engineering and Department of Statistics Texas A&M University College Station Texas USA
Abstract
AbstractModel calibration is crucial for optimizing the performance of complex computer models across various disciplines. In the era of Industry 4.0, symbolizing rapid technological advancement through the integration of advanced digital technologies into industrial processes, model calibration plays a key role in advancing digital twin technology, ensuring alignment between digital representations and real‐world systems. This comprehensive review focuses on the Kennedy and O'Hagan (KOH) framework (Kennedy and O'Hagan, Journal of the Royal Statistical Society: Series B 2001; 63(3):425–464). In particular, we explore recent advancements addressing the challenges of the unidentifiability issue while accommodating model inadequacy within the KOH framework. In addition, we explore recent advancements in adapting the KOH framework to complex scenarios, including those involving multivariate outputs and functional calibration parameters. We also delve into experimental design strategies tailored to the unique demands of model calibration. By offering a comprehensive analysis of the KOH approach and its diverse applications, this review serves as a valuable resource for researchers and practitioners aiming to enhance the accuracy and reliability of their computer models.This article is categorized under:
Statistical Models > Semiparametric Models
Statistical Models > Simulation Models
Statistical Models > Bayesian Models
Funder
Division of Mathematical Sciences
Division of Computer and Network Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献