A hybrid forecasting model based on deep learning feature extraction and statistical arbitrage methods for stock trading strategies

Author:

Zhang Weiqian1ORCID,Li Songsong1,Guo Zhichang2,Yang Yizhe2

Affiliation:

1. School of Management Harbin Institute of Technology No. 92 West Dazhi Street, Nangang District Harbin City Heilongjiang Province China

2. School of Mathematics Harbin Institute of Technology No. 92 West Dazhi Street, Nangang District Harbin City Heilongjiang Province China

Abstract

AbstractThe time series data of financial markets are nonlinear, owing to rapid data accumulation. Thus, research on stock price prediction has always been a challenge. This study proposes a quantitative trading strategy that combines basic quantitative trading rules and deep learning methods to help investors realize arbitrage. We combine basic quantitative trading arbitrage with deep learning frameworks to fully extract market characteristics and develop trading strategies for investors. The hybrid forecasting model is a new signal‐trading system that uses a genetic algorithm to obtain optimal parameters for the technical indicator timing method of the moving average price. The deep learning structure of the CNN‐Bi‐LSTM, with the attention mechanism and modified loss function, optimizes the trading signal to achieve local optimization. Its core concept is to determine the trading signal through the local trend of price fluctuations and then correct the trading signal through the prediction results. A‐shares in the Chinese market trading data are used as the statistical arbitrage analysis process to output actual trading signals and verify the effectiveness of the system. The results demonstrate that an arbitrage strategy based only on moving average trading rules is ineffective. With the optimization of the deep learning CNN‐Bi‐LSTM framework, the arbitrage ability improves significantly. The optimized strategy can increase the final profit by 1.6042 to the greatest extent. The annualized revenue increased by 35.16%, and the winning rate increased by 15.22%. In addition, we consider the transaction costs during the simulated transaction process. An optimized trading strategy can effectively seize arbitrage opportunities; hence, its profitability and stability are significantly improved.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Strategy and Management,Computer Science Applications,Modeling and Simulation,Economics and Econometrics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3