Rapid multi‐catheter segmentation for magnetic resonance image‐guided catheter‐based interventions

Author:

Aleong Amanda M.1,Berlin Alejandro23,Borg Jette23,Helou Joelle23,Beiki‐Ardakani Akbar2,Rink Alexandra234,Raman Srinivas23,Chung Peter23,Weersink Robert A.1234

Affiliation:

1. Institute of Biomedical Engineering University of Toronto Toronto Ontario Canada

2. Department of Radiation Medicine Princess Margaret Cancer Centre Toronto Ontario Canada

3. Department of Radiation Oncology University of Toronto Toronto Ontario Canada

4. Department of Medical Biophysics University of Toronto Toronto Ontario Canada

Abstract

AbstractBackgroundMagnetic resonance imaging (MRI) is the gold standard for delineating cancerous lesions in soft tissue. Catheter‐based interventions require the accurate placement of multiple long, flexible catheters at the target site. The manual segmentation of catheters in MR images is a challenging and time‐consuming task. There is a need for automated catheter segmentation to improve the efficiency of MR‐guided procedures.PurposeTo develop and assess a machine learning algorithm for the detection of multiple catheters in magnetic resonance images used during catheter‐based interventions.MethodsIn this work, a 3D U‐Net was trained to retrospectively segment catheters in scans acquired during clinical MR‐guided high dose rate (HDR) prostate brachytherapy cases. To assess confidence in segmentation, multiple AI models were trained. On clinical test cases, average segmentation results were used to plan the brachytherapy delivery. Dosimetric parameters were compared to the original clinical plan. Data was obtained from 35 patients who underwent HDR prostate brachytherapy for focal disease with a total of 214 image volumes. 185 image volumes from 30 patients were used for training using a five‐fold cross validation split to divide the data for training and validation. To generate confidence measures of segmentation accuracy, five trained models were generated. The remaining five patients (29 volumes) were used to test the performance of the trained model by comparison to manual segmentations of three independent observers and assessment of dosimetric impact on the final clinical brachytherapy plans.ResultsThe network successfully identified 95% of catheters in the test set at a rate of 0.89 s per volume. The multi‐model method identified the small number of cases where AI segmentation of individual catheters was poor, flagging the need for user input. AI‐based segmentation performed as well as segmentations by independent observers. Plan dosimetry using AI‐segmented catheters was comparable to the original plan.ConclusionThe vast majority of catheters were accurately identified by AI segmentation, with minimal impact on plan outcomes. The use of multiple AI models provided confidence in the segmentation accuracy and identified catheter segmentations that required further manual assessment. Real‐time AI catheter segmentation can be used during MR‐guided insertions to assess deflections and for rapid planning of prostate brachytherapy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3