Exploiting deep reinforcement learning and metamorphic testing to automatically test virtual reality applications

Author:

de Andrade Stevão Alves1ORCID,Nunes Fatima L. S.2,Delamaro Márcio Eduardo1ORCID

Affiliation:

1. Instituto De Ciências Matemáticas e de Computação Universidade de São Paulo São Carlos Brazil

2. Escola de Artes, Ciências e Humanidades Universidade de São Paulo São Paulo Brazil

Abstract

SummaryDespite the rapid growth and popularization of virtual reality (VR) applications, which have enabled new concepts for handling and solving existing problems through VR in various domains, practices related to software engineering have not kept up with this growth. Recent studies indicate that one of the topics that is still little explored in this area is software testing, as VR applications can be built for practically any type of purpose, making it difficult to generalize knowledge to be applied. In this paper, we present an approach that combines metamorphic testing, agent‐based testing and machine learning to test VR applications, focusing on finding collision and camera‐related faults. Our approach proposes the use of metamorphic relations to detect faults in collision and camera components in VR applications, as well as the use of intelligent agents for the automatic generation of test data. To evaluate the proposed approach, we conducted an experimental study on four VR applications, and the results showed an of the solution ranging from 93% to 69%, depending on the complexity of the application tested. We also discussed the feasibility of extending the approach to identify other types of faults in VR applications. In conclusion, we discussed important trends and opportunities that can benefit both academics and practitioners.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica

Publisher

Wiley

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3