Hydrological changes in a plain basin in central Argentina following expansion of rainfed agriculture and climate change

Author:

Guerra Juan Carlos1,Nosetto Marcelo Daniel23ORCID

Affiliation:

1. Department of Engineering and Exact Sciences, College of Agricultural and Veterinary Sciences Sao Paulo State University (FCAV/UNESP) Prof. Paulo Donato Castellane Access Road s/n Jaboticabal SP 14884‐900 Brazil

2. Grupo de Estudios Ambientales Instituto de Matemática Aplicada San Luis (UNSL & CONICET) Av. Ejército de los Andes 950 San Luis 5700 Argentina

3. Cátedra de Climatología Agrícola Facultad de Ciencias Agropecuarias (UNER) Ruta 11, km 10, Oro Verde 3100 Entre Ríos Argentina

Abstract

AbstractThe characterization of long‐term streamflow in regions undergoing climatic change and agricultural expansion is relevant for achieving sustainable development goals and for assessing the vulnerability of water‐dependent populations and agricultural activities. The objective of this work was to characterize the temporal patterns of water yield in the plain basin of the Carcarañá River (33,063 km2), located in central Argentina and to analyse its relationship with a fast expansion of rainfed cultivation and climate change. The streamflow data for the period 1980–2020 were analysed in conjunction with climatic data (rainfall, reference evapotranspiration), satellite data (NDVI) and cropping statistics (sown area of summer crops) data. The annual water yield averaged ~10% of the rainfall and showed a clear upward trend throughout the study period, both in absolute terms and relative to rainfall (i.e., runoff coefficient), which was not explained by rainfall or reference evapotranspiration temporal patterns. Conversely, we found that the trend in water yield was positively associated with the agricultural area (p < 0.05), which more than doubled during the study period (from 29% to 66%). Likewise, the mean NDVI of the basin, a proxy for primary productivity and vegetation transpiration, has decreased steadily over the last 20 years (p < 0.05). The separation between base flow and quick flow suggested that both flows increased during the analysed period (p < 0.05), though the latter would have been more relevant in explaining the trend observed in total flow. Taken together, our results suggest that agricultural expansion, rather than climate change, is the dominant factor explaining the hydrological changes observed in the study basin. Understanding the key role of land use in shaping the hydrology of a landscape is critical to developing policies and practices for more efficient and sustainable use of environmental resources.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Agencia Nacional de Promoción Científica y Tecnológica

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3