Proteomics techniques in protein biomarker discovery

Author:

Babaei Mahsa1,Kashanian Soheila23,Lee Huang‐Teck4,Harding Frances5

Affiliation:

1. Department of Biology Faculty of Science Razi University Kermanshah Iran

2. Faculty of Chemistry Sensor and Biosensor Research Center (SBRC) Razi University Kermanshah Iran

3. Nanobiotechnology Department Faculty of Innovative Science and Technology Razi University Kermanshah Iran

4. Centre for Marine Bioproducts Development Flinders University Adelaide South Australia Australia

5. Monash Institute of Pharmaceutical Sciences Monash University Melbourne New South Wales Australia

Abstract

AbstractProtein biomarkers represent specific biological activities and processes, so they have had a critical role in cancer diagnosis and medical care for more than 50 years. With the recent improvement in proteomics technologies, thousands of protein biomarker candidates have been developed for diverse disease states. Studies have used different types of samples for proteomics diagnosis. Samples were pretreated with appropriate techniques to increase the selectivity and sensitivity of the downstream analysis and purified to remove the contaminants. The purified samples were analyzed by several principal proteomics techniques to identify the specific protein. In this study, recent improvements in protein biomarker discovery, verification, and validation are investigated. Furthermore, the advantages, and disadvantages of conventional techniques, are discussed. Studies have used mass spectroscopy (MS) as a critical technique in the identification and quantification of candidate biomarkers. Nevertheless, after protein biomarker discovery, verification and validation have been required to reduce the false‐positive rate where there have been higher number of samples. Multiple reaction monitoring (MRM), parallel reaction monitoring (PRM), and selected reaction monitoring (SRM), in combination with stable isotope‐labeled internal standards, have been examined as options for biomarker verification, and enzyme‐linked immunosorbent assay (ELISA) for validation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3