Regulation of spermatogonial stem cell differentiation by Sertoli cells‐derived exosomes through paracrine and autocrine signaling

Author:

Tian Hairui12ORCID,Wang Xingju12,Li Xiaoxiao12,Song Weixiang12,Mi Jiaqi3,Zou Kang12ORCID

Affiliation:

1. Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology Nanjing Agricultural University Nanjing China

2. Stem Cell Research and Translation Center Nanjing Agricultural University Nanjing China

3. Department of Cancer Biology Cancer Center and Beckman Research Institute, City of Hope Duarte California USA

Abstract

AbstractIn the orchestrated environment of the testicular niche, the equilibrium between self‐renewal and differentiation of spermatogonial stem cells (SSCs) is meticulously maintained, ensuring a stable stem cell reserve and robust spermatogenesis. Within this milieu, extracellular vesicles, specifically exosomes, have emerged as critical conveyors of intercellular communication. Despite their recognized significance, the implications of testicular exosomes in modulating SSC fate remain incompletely characterized. Given the fundamental support and regulatory influence of Sertoli cells (SCs) on SSCs, we were compelled to explore the role of SC‐derived exosomes (SC‐EXOs) in the SSC‐testicular niche. Our investigation hinged on the hypothesis that SC‐EXOs, secreted by SCs from the testes of 5‐day‐old mice—a developmental juncture marking the onset of SSC differentiation—participate in the regulation of this process. We discovered that exposure to SC‐EXOs resulted in an upsurge of PLZF, MVH, and STRA8 expression in SSC cultures, concomitant with a diminution of ID4 and GFRA1 levels. Intriguingly, obstructing exosomal communication in a SC‐SSC coculture system with the exosome inhibitor GW4869 attenuated SSC differentiation, suggesting that SC‐EXOs may modulate this process via paracrine signaling. Further scrutiny revealed the presence of miR‐493‐5p within SC‐EXOs, which suppresses Gdnf mRNA in SCs to indirectly restrain SSC differentiation through the modulation of GDNF expression—an indication of autocrine regulation. Collectively, our findings illuminate the complex regulatory schema by which SC‐EXOs affect SSC differentiation, offering novel perspectives and laying the groundwork for future preclinical and clinical investigations.

Publisher

Wiley

Subject

Cell Biology,Clinical Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3