Effects of climate change and deep fertilization on the growth and yield of winter wheat in the Loess Plateau of China

Author:

Yang Cuiping1ORCID,Qiu Zhiyuan1,Wang Shuxian1,Shen Hongzheng1,Ma Xiaoyi1ORCID

Affiliation:

1. A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education Northwest A&F University Yangling China

Abstract

AbstractBACKGROUNDGlobal temperature is projected to rise continuously under climate change, negatively impacting the growth and yield of winter wheat. Optimizing traditional agricultural measures is necessary to mitigate potential winter wheat yield losses caused by future climate change. This study aims to explore the variations in winter wheat growth and yield on the Loess Plateau of China under future climate change, identify the key meteorological factors affecting winter wheat growth and yield, and analyze the differences in winter wheat yield and root characteristics under different fertilization depths.RESULTSMeteorological data from 20 General Circulation Models were applied to drive the Decision Support System for Agrotechnology Transfer model, simulating the future growth characteristics of winter wheat under various fertilization depths. The Random Forest model was used to determine the relative importance of meteorological factors influencing winter wheat yield, root length density and leaf area index. The results showed that temperature and high emission concentration were primary factors influencing crop yield under future climate change. The temperature increase projected from 2021 to 2100 would be anticipated to shorten the phenology period of winter wheat by 2–16 days and reduce grain yield by 2.9–12.7% compared to the period from 1981 to 2020. Conversely, the root length density and root weight of winter wheat would increase by 1.2–10.9% and 0.2–24.1%, respectively, in the future, and excessive allocation of root system resources was identified as a key factor contributing to the reduction in winter wheat yield. Compared with the shallow fertilization treatment (N5), the deep fertilization treatments (N15 and N25) increased the proportion of roots in the deep soil layer (30–60 cm) by 2.7–10.2%. Because of the improvement in root structure, the decline in winter wheat yield under deep fertilization treatments in the future is expected to be reduced by 1.2% to 6.5%, whereas water use efficiency increases by 1.1% to 2.4% compared to the shallow fertilization treatment.CONCLUSIONThe deep fertilization treatment can enhance the root structure of winter wheat and increase the proportion of roots in the deep soil layer, thereby effectively mitigating the decline in winter wheat yield under future climate change. Overall, optimizing fertilization depth effectively addresses the reduced winter wheat yield risks and agricultural production challenges under future climate change. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3