A transcriptomic landscape analysis of human necrotizing enterocolitis: Important roles of immune infiltration

Author:

Xie Zhuojun1ORCID,Kang Quan23,Shi Yulu1ORCID,Du Junbao1,Jiang Hao4

Affiliation:

1. Stem Cell Biology and Therapy Laboratory The Children's Hospital of Chongqing Medical University National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders Chongqing Key Laboratory of Pediatrics Chongqing China

2. Department of General Surgery The Children's Hospital of Chongqing Medical University National Clinical Research Center for Child Health and Disorders Ministry of Education Key Laboratory of Child Development and Disorders Chongqing Key Laboratory of Pediatrics Chongqing China

3. Molecular Oncology Laboratory The University of Chicago Medical Center Chicago Illinois USA

4. Pediatric Ward 1 Taihe Hospital Shiyan City Hubei China

Abstract

AbstractNecrotizing enterocolitis (NEC) is one of the most common and destructive diseases in neonates and an unpredictable surgical emergency. However, the molecular pathological mechanism of NEC is still not well understood. This study was designed to provide a molecular basis for the pathogenesis of human NEC through bioinformatics analysis and immune infiltration. For RNA‐Seq, DEseq2 algorithm was used to identify differentially expressed genes (DEGs) and to perform functional enrichment analysis. Immune infiltration was analyzed by CIBERSORT algorithm. A total of 34,712 genes were detected and 7463 DEGs were identified in this study. Gene Ontology analysis revealed that DEGs were mainly involved in CCR1 chemokine receptor binding, transporter activity, growth factor binding, etc. KEGG pathway analysis showed that the DEGs were significantly enriched in the toll‐like receptor signaling pathway, Th17 cell differentiation, and cytokine–cytokine receptor interaction. The immune infiltration profiles varied significantly between NEC, NEC self‐control, and normal intestinal tissues. Finally, the expression levels of 21 DEGs were verified by reverse transcription quantitative real‐time PCR. Our findings may provide new insights into the development of NEC.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3