Affiliation:
1. College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. China
Abstract
AbstractThe combination of semiconductors and transition metal compounds for Fenton‐like application has been widely reported. However, there are still some problems that can be further studied such as the optimization of metal species and in‐depth research of mechanism. In this paper, using melamine and copper acetate as raw materials, a kind of composite of copper oxide and graphitic carbon nitride (CuO/g‐C3N4) is synthesized by a facile hydrothermal method. The synthetic conditions such as type of transition metal salt and ratio of raw material are further optimized. With the presence of H2O2, the CuO/g‐C3N4 composite shows exceptional broad‐spectrum Fenton‐like catalytic performance against the organic dyes in aqueous solution within a wide pH range, and the highest degradation rate of organic dyes can reach 99% within 10 min. After eight times of recycling, the catalytic activity of the composite can still remain more than 85%. More importantly, the CuO/g‐C3N4 composite presented excellent anti‐interference ability toward heavy metal ions and complex pollutants. Finally, the enhanced Fenton‐like catalytic mechanism is illustrated in detail.
Subject
Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献