Assembly of Zinc‐Single‐Site‐Containing Silica Nanoparticles to Supraparticle Powders with Destructibility to Serve as Filler and Vulcanization Activator in Rubbers

Author:

Wenderoth Sarah1,Milana Paola2,Zimmermann Thomas3ORCID,Deues Moritz1,Oppmann Maximilian1,Prieschl Johannes3,Mostoni Silvia2,Scotti Roberto24,Wintzheimer Susanne13,Mandel Karl13ORCID

Affiliation:

1. Fraunhofer Institute for Silicate Research Neunerplatz 2 97082 Würzburg Germany

2. Department of Materials Science INSTM University of Milano Bicocca Via Roberto Cozzi 55 Milano 20125 Italy

3. Department of Chemistry and Pharmacy Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 1 91058 Erlangen Germany

4. Institute for Photonics and Nanotechnologies‐CNR Via alla Cascata 56/C Povo (TN) 38123 Italy

Abstract

AbstractThe vulcanization process is widely used in industry for tire manufacturing. Therefore, zinc oxide is commonly utilized as an activator material, but unreacted zinc oxide remains in the final products and can be released into the environment with a significant impact. To reduce the amount of required zinc and to prevent leaching from tire material, zinc single site‐containing silica fillers are interesting candidates. In these materials, zinc sites are anchored on the surface of silica nanoparticles through their complexation with functionalized aminosilanes. Based on these, a novel powder sample is prepared via spray‐drying. The obtained supraparticles allow for a homogeneous distribution of the filler nanoparticles in the rubber matrix via their disintegration during the incorporation process. All synthesis steps are carried out in ethanol and water, respectively, at very mild temperatures to account for sustainability demands. As core of this study, the role of zinc ions and their amino‐complexation in nanoparticle dispersion stability and in supraparticle formation during spray‐drying is elucidated. Additionally, the superior performance of supraparticles as activator in rubber vulcanization is demonstrated. These show a higher curing efficiency, leading to lower curing time (−70%), higher torque values (+15%), and improved dynamic mechanical properties compared to the conventional ZnO activator.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3