Antibacterial and Antibiofilm Activity of Zinc Oxide Quantum Dots against Methicillin‐resistant Staphylococcus aureus

Author:

Abbas Zahraa Neamah12,Abdullah Hanaa N.2,Hallaji Zahra1,Ranjbar Bijan13ORCID

Affiliation:

1. Department of Nanobiotechnology Faculty of Biological Sciences Tarbiat Modares University Tehran 1411713116 Iran

2. Department of Medical Techniques Faculty of Health and Medical Technology Middle Technical University Baghdad 29038 Iraq

3. Department of Biophysics Faculty of Biological Sciences Tarbiat Modares University Tehran 1411713116 Iran

Abstract

AbstractAntimicrobial resistance occurs mostly through the ineffective and unauthorized use of antibiotics in both the environment and health care. Biofilms are a new target in the search for new antibacterial agents. Here, the sol‐gel method is used to produce zinc oxide quantum dots (ZnO‐QDs). The ZnO‐QDs show yellow emission at 526 nm under 360 nm excitation. After that, the ability of ZnO‐QDs as an antibacterial and antibiofilm agent against methicillin‐resistant Staphylococcus aureus (MRSA) is examined. The 100 samples are collected from patients with hospital‐acquired infections between December 2020 and October 2021 from Imamen Kadhmiyan Teaching Hospital in Baghdad (Iraq). Out of these 100 samples, 63 are S. aureus and 20 out of 63 are MRSA. The minimum inhibitory concentration assay demonstrates the antibacterial activity of ZnO‐QDs on MRSA strains. Also, results show that 80, 5, and 15% of isolated MRSA strains produce strong, moderate, and weak or very weak biofilm, respectively. The effect of ZnO‐QDs on strong and moderate biofilms reveal that QDs could also inhibit and destroy biofilm produced by MRSA. In addition, the antibiofilm effect of ZnO‐QDs is greater than their antibacterial effect. Generally, this work offers new insights into the development of antibacterial and antibiofilm nanomaterials.

Funder

Tarbiat Modares University

Middle Technical University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3