Design of Vaterite Nanoparticles for Controlled Delivery of Active Immunotherapeutic Proteins

Author:

Nelemans Levi Collin1ORCID,Choukrani Ghizlane1,Ustyanovska‐Avtenyuk Natasha1,Wiersma Valerie R1,Dähne Lars2,Bremer Edwin1

Affiliation:

1. Department of Hematology University Medical Center Groningen (UMCG) University of Groningen Hanzeplein 1 Groningen 9713 GZ The Netherlands

2. Surflay Nanotec GmbH Max‐Planck‐Straße 3 12489 Berlin Germany

Abstract

AbstractDespite clinical advances in immunotherapy, still many therapeutics cause dose‐limiting (auto)immune‐mediated toxicities. Nanoparticle‐based drug delivery systems (DDS) can improve cancer immunotherapy through site‐specific delivery and controlled release of immunotherapeutics in the tumor microenvironment (TME). However, DDS face several challenges, including unspecific release. To address this, vaterite nanoparticles (VNPs) that selectively release immunotherapeutic proteins at low pH conditions find in the TME, are established previously. In the current study, these VNPs are further modified for active targeting without affecting the loaded protein activity, exemplified with Tumor Necrosis Factor α (TNF). Specifically, VNPs are coated with gelatin, a matrix‐metalloprotease sensitive polymer which provides functional groups for further conjugation. Subsequently, streptavidin is covalently linked to the gelatin shell by amine‐epoxy chemistry, enabling coupling of any biotinylated ligand. Exemplified by biotinylated cetuximab and rituximab, targeted VNPs selectively bind to cells expressing epidermal growth factor receptor (EGFR) or CD20, respectively. Importantly, TNF remains functionally active after the modification steps, as VNP treatment increased ICAM‐1 expression on FaDu cells and activated NFκB signaling in a Jurkat.NFκB‐luciferase cell line model. In conclusion, a targetable vaterite‐based DDS is produced that allows for easy surface modification with any biotinylated ligand that may find broad applications in tumor‐selective immunotherapy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3