Green Synthesis and Antimicrobial Study on Jujube Seed Extract Functionalized Ag Nanoparticles

Author:

Fan Jiashen1234,Song Han1234,Liu Shengkai1234,Chen Boyu1234,Fu Yujie13,Liu Zhiguo1234ORCID

Affiliation:

1. Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin 150040 P. R. China

2. College of Chemistry Chemical Engineering, and Resource Utilization Northeast Forestry University Harbin 150040 P. R. China

3. Engineering Research Center of Forest Bio‐preparation Ministry of Education Northeast Forestry University Harbin 150040 P. R. China

4. Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry‐Based Active Substances Harbin 150040 P. R. China

Abstract

AbstractGreen synthesis of Ag nanoparticles (AgNPs) by using the plant extract is a very important strategy to gain efficient antimicrobial agents with strong antimicrobial activity and low toxicity. In this study, jujube seed extract (JSE) is utilized to green synthesis of AgNPs by both hydrothermal process and solution‐based approaches. UV–vis absorption spectroscopy and infrared spectroscopy (FTIR) spectra confirm that jujube seed extract functionalized Ag nanoparticles are formed by both approaches and jujube seed extract covered on the surface of Ag nanoparticles. Transmission electron microscopy (TEM) images indicate that the JSE‐AgNPs are spherical with the average diameter of 17.7 and 14.2 nm for the hydrothermal process and solution‐based approaches, respectively. X‐ray diffraction (XRD) results indicate that the JSE‐AgNPs prepared by both approaches have face‐centered cubic crystal structure. The antimicrobial activity test reveals that minimum inhibitory concentrations (MIC) of JSE‐AgNPs by the solution‐based method are 62.5, 125, and 62.5 µg mL−1 against Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively. These results imply that the JSE‐AgNPs have potential to be developed as efficient antimicrobial agents.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Higher Education Discipline Innovation Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3