Role of Silica, Carbon, and ZnO Nanomaterials in the Fabrication of Electrochemical Sensors for the Detection of Water Contaminants and Food Dye

Author:

Santra Sampurna12,Datta Deepshikha3,Biswas Soheli4,Das Bimal2ORCID

Affiliation:

1. Department of Electronics and Communication Engineering Murshidabad College of Engineering & Technology Berhampore 742102 India

2. Department of Chemical Engineering National Institute of Technology Durgapur 713209 India

3. Department of Chemistry Brainware University Barasat Kolkata West Bengal 700125 India

4. Department of Molecular Biology and Biotechnology Kalyani University Kalyani West Bengal 741245 India

Abstract

AbstractSilica‐based nanomaterials have attracted huge attention for maximizing their safety and efficacy due to their nontoxicity, chemical and thermal stability, size tunability, and versatile functionality. Nanosilica with ZnO or carbon in a composite has excellent usage as an electrochemical sensor. Recent technological progression in nanotechnology and nanoscience has seen a number of applications of zinc oxide (ZnO) nanomaterials ranging from electronics, and sensing to environmental, and biomedical applications because of its various applications, multifunction, high specific surface area, stability, biocompatibility, nontoxicity, electrochemical activities, and so on. Carbon also has various advantageous properties like renewability, low ohmic resistance, and very stable response due to which carbon paste electrodes have attracted attention in the fabrication of electrochemical sensors. Electrochemical sensors are inexpensive, portable, and have excellent ability in detecting water contaminants, pesticides, disinfectants, pathogens, and different molecules. Artificial dyes are usually mixed with vegetable sauces, drinks, and other food items, which can cause cancer in human body. Voltametric methods with electrochemical sensors can be used to detect them in food samples. In this review, the present applications of ZnO and carbon nanomaterial‐based chemical sensors are meticulously studied to detect water contaminants and food dyes where nanosilica plays an important role as a sensor modifier.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3