Preparation of TiO2 Nanorods Composites Doped with Silver Nanoparticles and Their Bactericidal Properties under Visible Light Irradiation

Author:

Ren Yufang1,Sun Zeyuan2,Huang Yong3,An Xiaoyan1,Bian Xiaona1,Cao Zhenhao1,Liu Yifan1,Javed Kanwal1,Derkach Tetiana2,Li Xue1ORCID

Affiliation:

1. Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials School of Chemistry and Chemical Engineering University of Jinan 336 West Road of Nan Xinzhuang Jinan 250022 P. R. China

2. Kyiv National University of Technologies and Design Kyiv 01011 Ukraine

3. Shandong Leihua Plastic Engineering Co., Ltd. South Head of Cangshan Road, Industrial Park, Linshu County Linyi City Shandong Province 276700 P. R. China

Abstract

AbstractTiO2 is a widely used photocatalytic antibacterial material and shows good antibacterial properties under ultraviolet light. However, its antibacterial efficacy under visible light still remains limited. To develop low‐cost and biocompatible antibacterial materials, this article provides a facile method for in situ preparation of a trace amount of silver (Ag) doped TiO2 nanorods (TiO2NR–Ag) composites, which cannot only enhance the antibacterial properties under visible light, but also has good biocompatibility. Two representative epidemic strains, Staphylococcus aureus and Escherichia coli, are selected for analysis of the antibacterial properties of the obtained TiO2NR–Ag composite nanoparticles. The results demonstrate that even if the Ag doping level is as low as 2.5 × 10−4 wt% (i.e., Ag/TiO2 = 2.50 µg g−1), the TiO2NR–Ag composite nanoparticle coatings are transparent and exhibit exceptional antibacterial properties, which is attributed to synergistic enhanced bactericidal effect of the active substances generated by TiO2NR–Ag under visible light. The cytotoxicity and hemolysis rate results indicate that TiO2NR–Ag composite exhibit excellent biocompatibility. This study effectively improves the antibacterial effect of TiO2 photocatalytic nanomaterials while maintaining their biocompatibility, and the prepared TiO2NR–Ag composite nanoparticles can be applied in various fields such as window glasses, medical device surfaces, furniture surfaces, and optical devices, etc.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3