Affiliation:
1. College of Biomedical Engineering Taiyuan University of Technology Taiyuan Shanxi 030600 China
2. College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan Shanxi 030600 China
Abstract
AbstractA dual‐drug delivery, pH‐responsive composite nanoplatform (MAPD NPs) that can respond to two biological windows is developed to improve the efficacy of synergetic chemotherapic/photothermal/chemodynamic therapy (CDT) against tumors. This nanoplatform is surface‐modified polydopamine (PDA) with excellent biocompatibility as the shell and Ag NPs as the catalyst for CDT. The curcumin (Cur) acts as an organic ligand to be encapsulated in metal−biomolecule frameworks (Bio‐MOFs) by self‐assembly, and Bio‐MOF acts as a delivery carrier to deliver of DOX•HCl and then releases the Cur when it degrades in vivo. Moreover, Bio‐MOF can be taken up by cells faster and accelerate cell death compared to free Cur. PDA modification enables MAP (PDA@MOF‐Ag) to have photothermal properties under 808 and 1064 nm light irradiation, which not only improves the biocompatibility of MAP but also makes it produce high heat and abundant ·OH. The photothermal performance of MAP is stable after irradiation at 808 or 1064 nm, and the photothermal conversion efficiency reaches 63.57% and 26.25%. The survival rate of HeLa cells co‐incubation with MAPD NPs after irradiation at 808 and 1064 nm decreases to 19.52 ± 0.69% and 30.48 ± 0.49%, respectively, providing a feasible scheme for the realization of deep tumor killing.
Funder
Shanxi Scholarship Council of China
National Natural Science Foundation of China
Subject
Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献