Synthesis and characterization of eco‐friendly poly(ε‐caprolactone) plasticizer facilitating phthalate‐free polyvinyl chloride with novel star/net‐shaped structures

Author:

Dong Xue1ORCID,Long Mengfei1,Liu Hongxia1,Gao Ling1,Xu Xinjie1,Xia Xiaole1ORCID

Affiliation:

1. The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi China

Abstract

AbstractPotential migration and toxicity limited applications of traditional plasticizers like bis(2‐ethylhexyl) phthalate (DEHP) in food packing and medical machinery and so forth. Safe and feasible bio‐based plasticizers have recently moved into the limelight of research hotspot. Here, we designed series polyester plasticizers of various branches with star‐shaped poly(ε‐caprolactone) (SPCLs) and net‐shaped poly(ε‐caprolactone) (NPCLs) structures by one‐pot solvent‐free synthesis with glycidol and polyglycerol as initiators. Structures of SPCLs and NPCLs were further verified by FTIR, 1H NMR, and 13C NMR. Moreover, the properties of the plasticizers and plasticized PVC were evaluated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and tensile test. PVC films plasticized with the SPCLs or NPCLs exhibited increased plasticizing effect, compatibility, flexibility and cold resistance. The lowest Tg value of plasticized PVC samples (PVC/NPCL1‐C4) was −45.3°C, which made the plasticization efficiency reach 122.5%. In particular, PVC/SPCLs‐C4 (SPCL2‐C4) had 107% higher elongation at break than PVC/DEHP. Meanwhile, the initial decomposition temperature Ti value of the PVC blends maximum increased from 240 to 328°C when DEHP was completely replaced by SPCLs or NPCLs, indicating improved thermal stability of the plasticizer. Overall, “green” plasticizers with fining topological branch design would be promising to partially replace petroleum‐based plasticizers.

Funder

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3