Affiliation:
1. School of Chemical Sciences The University of Auckland/Waipapa Taumata Rau Auckland New Zealand
2. School of Biological Sciences The University of Auckland/Waipapa Taumata Rau Auckland New Zealand
Abstract
AbstractPinot noir grapes require careful management in the winery to prevent loss of color density and promote aging stability. Winemaking with flocculent yeast has been shown to increase color density, which is desirable to consumers. This research explored interspecies sequential inoculation and co‐flocculation of commercial yeast on Pinot noir wine color. Sedimentation rates of six non‐Saccharomyces species and two Saccharomyces cerevisiae strains were assayed individually and in combination. The most flocculent pairings, Torulaspora delbrueckii BIODIVA with S. cerevisiae RC212 or VL3, were used to ferment 20 L Pinot noir must. Sequential fermentations produced wines with greater color density at 420 + 520 nm, confirmed by sensory panel. Total and monomeric anthocyanin concentrations were decreased in sequentially fermented wines, despite being the main source of red wine color. BIODIVA adsorbed more anthocyanins than S. cerevisiae, indicating a greater number of cell wall mannoproteins in flocculent yeast, that could then result in a later release of anthocyanins and enhance copigment formation in red wines.
Subject
Genetics,Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献