The benefits of forecasting inflation with machine learning: New evidence

Author:

Naghi Andrea A.1,O'Neill Eoghan23ORCID,Danielova Zaharieva Martina4ORCID

Affiliation:

1. Erasmus University Rotterdam Rotterdam The Netherlands

2. Queen Mary University of London London UK

3. Tinbergen Institute Amsterdam The Netherlands

4. CUNEF University Madrid Spain

Abstract

SummaryMedeiros et al. (2021) (Journal of Business & Economic Statistics, 39:1, 98–119) find that random forest (RF) outperforms US inflation forecasting benchmarks. We replicate the main results in Medeiros et al. (2021) and (1) considerably expand the set of machine learning methods, (2) analyse the predictive ability of both the initial and extended sets of methods on Canadian and UK data, (3) add results on coverage rates and widths of prediction intervals and (4) extend the sample from January 2016 to October 2022. Our narrow replication confirms the main findings of the original paper. However, the wider replication results suggest that other methods are competitive with RF and often more accurate. In addition, RF produces disappointing results during the coronavirus pandemic and subsequent high inflation of 2020–2022, whereas a stochastic volatility model and some gradient boosting methods produce more accurate forecasts.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3