Mio‐Pliocene paleo‐course of Indus River in Upper Sutlej‐Zhada basin: Implication of tectonic uplift on river piracy and drainage reorganization in SW Tibet and NW Himalaya

Author:

Kashyap Abhishek1ORCID,Pandey Anand Kumar2,Behera Mukunda Dev1

Affiliation:

1. Centre for Ocean, River, Atmosphere and Land Sciences (CORAL) Indian Institute of Technology Kharagpur Kharagpur West Bengal India

2. CSIR‐National Geophysical Research Institute Hyderabad India

Abstract

AbstractWe analysed the elevated low‐relief relict landscapes in the transient Upper Satluj‐Zhada basin and the adjoining region in the tectonically active north‐western (NW) Himalaya–south‐western (SW) Tibetan orogen to understand the evolution of the regional landscape and drainage system under the influence of the Karakoram Fault‐Leo‐Pargil Horst system. This elevated low relief landscape represents the Mio‐Pliocene establishment of a new river network, which testimonies the present Sutlej River, which has been experiencing a transient surface uplift‐incision regime since (~4–1 Ma) with a local base level at the confluence of the Sutlej and Spiti River. The Miocene exhumation of the Ayilari Range and Leo‐Pargil Horst across the Karakoram fault (KF) system led to headward erosion, which abandoned the Paleo‐Sutlej‐Indus drainage system, which in turn caused drainage reversal along Qusum detachment (QD) and produced southward migration of the Paleo‐Sutlej River towards the mountain front. Our results indicate that the Upper Indus River has significantly lower χ‐ranges at higher elevations as compared with the adjacent Upper Sutlej River at lower elevations, which corresponds with a river piracy model that incorporates area gain‐loss feedback. The Upper Sutlej River in the Zhada basin is characterized by a comparable series of coplanar slope‐break knickpoints at ~4000–4500 m elevation, and their adjoining divides are in a state of disequilibrium as a consequence of the very high rapid incision across the Leo Pargil Horst, which drives the regional gradation process. The headward‐eroding Upper Indus River captured the proto‐Sutlej due to a base‐level change of >~1500 m, which significantly impacted the regional growth pattern and tectonics. The Mio‐Pliocene sedimentation pattern of the Upper Sutlej‐Zhada basin in the SW Tibet–NW Himalaya reflects this regional drainage capture, tectonic uplift and paleo‐drainage reorganization. The present finding has wider implications for the Mio‐Pliocene reorganization of drainage systems and the possible linkage of the Upper Indus River with the Paleo‐Sutlej over the Zhada basin.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3