Mesenchymal Stem Cells Induce Suppressive Macrophages Through Phagocytosis in a Mouse Model of Asthma

Author:

Braza Faouzi123,Dirou Stéphanie1234,Forest Virginie123,Sauzeau Vincent123,Hassoun Dorian123,Chesné Julie123,Cheminant-Muller Marie-Aude123,Sagan Christine1234,Magnan Antoine1234,Lemarchand Patricia1234

Affiliation:

1. INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France

2. CNRS, UMR 6291, Nantes, F-44000, France

3. Université de Nantes, Nantes, F-44000, France

4. CHU de Nantes, Nantes, F-44000, France

Abstract

Abstract Mesenchymal stem cell (MSC) immunosuppressive functions make them attractive candidates for anti-inflammatory therapy in allergic asthma. However, the mechanisms by which they ensure therapeutic effects remain to be elucidated. In an acute mouse model of house dust mite (Der f)-induced asthma, one i.v. MSC injection was sufficient to normalize and stabilize lung function in Der f-sensitized mice as compared to control mice. MSC injection decreased in vivo airway responsiveness and decreased ex vivo carbachol-induced bronchial contraction, maintaining bronchial expression of the inhibitory type 2 muscarinic receptor. To evaluate in vivo MSC survival, MSCs were labeled with PKH26 fluorescent marker prior to i.v. injection, and 1 to 10 days later total lungs were digested to obtain single-cell suspensions. 91.5 ± 2.3% and 86.6 ± 6.3% of the recovered PKH26+ lung cells expressed specific macrophage markers in control and Der f mice, respectively, suggesting that macrophages had phagocyted in vivo the injected MSCs. Interestingly, only PKH26+ macrophages expressed M2 phenotype, while the innate PKH26− macrophages expressed M1 phenotype. Finally, the remaining 0.5% PKH26+ MSCs expressed 10- to 100-fold more COX-2 than before injection, suggesting in vivo MSC phenotype modification. Together, the results of this study indicate that MSCs attenuate asthma by being phagocyted by lung macrophages, which in turn acquire a M2 suppressive phenotype.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3