Sparsity‐guided multiple functional connectivity patterns for classification of schizophrenia via convolutional network

Author:

Yu Renping1ORCID,Pan Cong1ORCID,Bian Lingbin2,Fei Xuan3ORCID,Chen Mingming1ORCID,Shen Dinggang245ORCID

Affiliation:

1. School of Electrical and Information Engineering Zhengzhou University Zhengzhou China

2. School of Biomedical Engineering ShanghaiTech University Shanghai China

3. School of Artificial Intelligence and Big Data Henan University of Technology Zhengzhou China

4. Shanghai United Imaging Intelligence Co., Ltd. Shanghai China

5. Shanghai Clinical Research and Trial Center Shanghai China

Abstract

AbstractThe explorations of brain functional connectivity network (FCN) using resting‐state functional magnetic resonance imaging can provide crucial insights into discriminative analysis of neuropsychiatric disorders, such as schizophrenia (SZ). Pearson's correlation (PC) is widely used to construct a densely connected FCN which may overlook some complex interactions of paired regions of interest (ROIs) under confounding effect of other ROIs. Although the method of sparse representation takes into account this issue, it penalizes each edge equally, which often makes the FCN look like a random network. In this paper, we establish a new framework, called convolutional neural network with sparsity‐guided multiple functional connectivity, for SZ classification. The framework consists of two components. (1) The first component constructs a sparse FCN by integrating PC and weighted sparse representation (WSR). The FCN retains the intrinsic correlation between paired ROIs, and eliminates false connection simultaneously, resulting in sparse interactions among multiple ROIs with the confounding effect regressed out. (2) In the second component, we develop a functional connectivity convolution to learn discriminative features for SZ classification from multiple FCNs by mining the joint spatial mapping of FCNs. Finally, an occlusion strategy is employed to explore the contributive regions and connections, to derive the potential biomarkers in identifying associated aberrant connectivity of SZ. The experiments on SZ identification verify the rationality and advantages of our proposed method. This framework also can be used as a diagnostic tool for other neuropsychiatric disorders.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3