Inhibitory effect and mechanism analysis of modified coal gangue powder on the methane–air explosion

Author:

Yang Ke123ORCID,Li Xuerui123,Ji Hong123,Xing Zhixiang123,Jiang Juncheng123,Ji Xinlong123

Affiliation:

1. School of Safety Science and Engineering Changzhou University Changzhou Jiangsu China

2. School of Emergency Management Science and Engineering Changzhou University Changzhou Jiangsu China

3. Institute of Public Safety and Emergency Management Changzhou University Changzhou Jiangsu China

Abstract

AbstractThe application of industrial solid waste coal gangue (CG) in gas explosion suppression is explored, which opens up a new way for the resource utilization of CG. Two modified CG anti‐explosion agents, first‐grade modified CG (RCG) and second‐grade modified CG (MCG), were prepared by roasting activation and acid–base synergistic excitation. The explosion suppression performance of CG, RCG, and MCG was investigated through a 2.5 L semi‐closed explosion pipe. The experimental results were compared and analyzed, and their pyrolysis characteristics, phase composition, and particle size were analyzed to reveal their explosion suppression mechanism. It was proved that MCG had the best explosion suppression effect. Under the condition of 9.5% methane–air, it was found that the explosion suppression effect was most significant when the powder mass of the three powders was 300, 360, and 360 mg, respectively. The peak explosion overpressure is reduced by 10.51%, 21.96%, and 32.66%, respectively, and the peak arrival time of flame velocity is extended by .14 times, .20 times, and 1.15 times, respectively. MCG can effectively inhibit methane explosion utilizing physical and chemical synergistic heat absorption, porous structure formation barrier, heat isolation, oxygen dilution, adsorption, and capture of free radicals.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3