Synergistic toughening modification and finite element analysis of carbon fiber/epoxy resin‐reinforced composites

Author:

Xu Weihao1,Wang Yuqing1,Gu Zhiqi2,Wang Ping1ORCID,Zhang Yan1ORCID,Li Yuanyuan13ORCID

Affiliation:

1. Key Laboratory of Jiangsu Province for Silk Engineering, College of Textiles & Clothing Engineering Soochow University Suzhou China

2. Nantong Hanvo New Material Technology Co., Ltd. Nantong China

3. Jiangsu Advance Textile Engineering Technology Center Nantong China

Abstract

AbstractIn this work, the poor fracture toughness of carbon fiber‐reinforced composites (CFRPs) was improved by the introduction of a graphene oxide/nanosilica (GOS) hybrid, and short carbon fibers (SCFs) were investigated through experimental and modeling methods. The effects of the SCF content, number of SCF layers, and introduction position on the mode I fracture toughness (GIC) and mode II fracture toughness (GIIC) of the composites were considered for epoxy resin (EP) modified by GOS. The results showed that GOS and SCF exhibited a synergistic toughening effect on CFRP. The GIC and GIIC of CFRP laminate with GOS content of 0.2 wt% and SCF content of 0.4 wt% reached 0.506 and 2.15 kJ/m2, increased by 72.2% and 53.6% compared to the unmodified composite, respectively. The number of layers and the lamination mode of GC10S5‐B specimens exhibited the optimal improvement of interlaminar fracture toughness. Similarly compared with those of the original. The GIC and GIIC of the CFRP laminates reached 0.662 and 0.506 kJ/m2 (enhanced by 125.9% and 95%, respectively). In addition, the stress propagation path and distribution, and progressive damage of the CFRP composites were obtained to further reveal the toughness mechanism.Highlights Synergistic toughening of resin modification and short carbon fiber on modes I and II fracture toughness of composites were considered. Content of short carbon fiber and lay‐up methods on toughness performance were investigated thoroughly. Finite element models were established to reveal the stress progress and distribution and toughness mechanism.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Qinglan Project of Jiangsu Province of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3