Affiliation:
1. State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering Chongqing Medical University Chongqing China
2. Chongqing Key Laboratory of Biomedical Engineering Chongqing Medical University Chongqing China
3. Department of Radiology The First Affiliated Hospital of Chongqing Medical University Chongqing China
4. Institute of Medical Data Chongqing Medical University Chongqing China
Abstract
AbstractPurposeUterine fibroid is the most common benign tumor in female reproductive organs. In order to guide the treatment, it is crucial to detect the location, shape, and size of the tumor. This study proposed a deep learning approach based on attention mechanisms to segment uterine fibroids automatically on preoperative Magnetic Resonance (MR) images.MethodsThe proposed method is based on U‐Net architecture and integrates two attention mechanisms: channel attention of squeeze‐and‐excitation (SE) blocks with residual connections, spatial attention of pyramid pooling module (PPM). We did the ablation study to verify the performance of these two attention mechanisms module and compared DARU‐Net with other deep learning methods. All experiments were performed on a clinical dataset consisting of 150 cases collected from our hospital. Among them, 120 cases were used as the training set, and 30 cases are used as the test set. After preprocessing and data augmentation, we trained the network and tested it on the test dataset. We evaluated segmentation performance through the Dice similarity coefficient (DSC), precision, recall, and Jaccard index (JI).ResultsThe average DSC, precision, recall, and JI of DARU‐Net reached 0.8066 ± 0.0956, 0.8233 ± 0.1255, 0.7913 ± 0.1304, and 0.6743 ± 0.1317. Compared with U‐Net and other deep learning methods, DARU‐Net was more accurate and stable.ConclusionThis work proposed an optimized U‐Net with channel and spatial attention mechanisms to segment uterine fibroids on preoperative MR images. Results showed that DARU‐Net was able to accurately segment uterine fibroids from MR images.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献