DARU‐Net: A dual attention residual U‐Net for uterine fibroids segmentation on MRI

Author:

Zhang Jian12,Liu Yang123,Chen Liping3,Ma Si12,Zhong Yuqing12,He Zhimin12,Li Chengwei12,Xiao Zhibo3,Zheng Yineng123,Lv Fajin1234

Affiliation:

1. State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering Chongqing Medical University Chongqing China

2. Chongqing Key Laboratory of Biomedical Engineering Chongqing Medical University Chongqing China

3. Department of Radiology The First Affiliated Hospital of Chongqing Medical University Chongqing China

4. Institute of Medical Data Chongqing Medical University Chongqing China

Abstract

AbstractPurposeUterine fibroid is the most common benign tumor in female reproductive organs. In order to guide the treatment, it is crucial to detect the location, shape, and size of the tumor. This study proposed a deep learning approach based on attention mechanisms to segment uterine fibroids automatically on preoperative Magnetic Resonance (MR) images.MethodsThe proposed method is based on U‐Net architecture and integrates two attention mechanisms: channel attention of squeeze‐and‐excitation (SE) blocks with residual connections, spatial attention of pyramid pooling module (PPM). We did the ablation study to verify the performance of these two attention mechanisms module and compared DARU‐Net with other deep learning methods. All experiments were performed on a clinical dataset consisting of 150 cases collected from our hospital. Among them, 120 cases were used as the training set, and 30 cases are used as the test set. After preprocessing and data augmentation, we trained the network and tested it on the test dataset. We evaluated segmentation performance through the Dice similarity coefficient (DSC), precision, recall, and Jaccard index (JI).ResultsThe average DSC, precision, recall, and JI of DARU‐Net reached 0.8066 ± 0.0956, 0.8233 ± 0.1255, 0.7913 ± 0.1304, and 0.6743 ± 0.1317. Compared with U‐Net and other deep learning methods, DARU‐Net was more accurate and stable.ConclusionThis work proposed an optimized U‐Net with channel and spatial attention mechanisms to segment uterine fibroids on preoperative MR images. Results showed that DARU‐Net was able to accurately segment uterine fibroids from MR images.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3