Determining the quality control frequency of an MR‐linac using risk matrix (RM) analysis

Author:

Ma Min1,Yan Hui1,Li Minghui1,Tian Yuan1,Zhang Ke1ORCID,Men Kuo1,Dai Jianrong1

Affiliation:

1. National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

Abstract

AbstractPurposeQuality control (QC) is performed routinely through professional guidelines. However, the recommended QC frequency may not be optimal among different institutional settings. Here we propose a novel method for determining the optimal QC frequency using risk matrix (RM) analysis.Methods and materialsA newly installed Magnetic Resonance linac (MR‐linac) was chosen as the testing platform and six routine QC items were investigated. Failures of these QC items can adversely affect treatment outcome for the patient. Accordingly, each QC item with its assigned frequency forms a unique failure mode (FM). Using FM‐effect analysis (FMEA), the severity (S), occurrence (O), and detection (D) of each FM was obtained. Next, S and D based on RM was used to determine the appropriate QC frequency. Finally, the performance of new frequency for each QC item was evaluated using the metric E = O/D.ResultsOne new QC frequency was the same as the old frequency, two new QC frequencies were less than the old ones, and three new QC frequencies were higher than the old ones. For six QC items, E values at the new frequencies were not less than their values at the old frequencies. This indicates that the risk of machine failure is reduced at the new QC frequencies.ConclusionsThe application of RM analysis provides a useful tool for determining the optimal frequencies for routine linac QC. This study demonstrated that linac QC can be performed in a way that maintains high performance of the treatment machine in a radiotherapy clinic.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Quality Assurance of a 1.5 T MR-Linac;Seminars in Radiation Oncology;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3