Spot delivery error predictions for intensity modulated proton therapy using robustness analysis with machine learning

Author:

Newpower Mark A.1,Chiang Bing‐Hao12,Ahmad Salahuddin1,Chen Yong1

Affiliation:

1. Department of Radiation Oncology University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA

2. Department of Radiation Oncology University of Washington Seattle Washington USA

Abstract

AbstractThe purpose of this work is to assess the robustness of treatment plans when spot delivery errors were predicted with a machine learning (ML) model for intensity modulated proton therapy (IMPT). Over 6000 machine log files from delivered IMPT treatment plans were included in this study. From these log files, over 4.1 106 delivered proton spots were used to train the ML model. The presented model was tested and used to predict the spot position as well as the monitor units (MU) per spot, based on the original planning parameters. Two patient plans (one accelerated partial breast irradiation [APBI] and one ependymoma) were recalculated with the predicted spot position/MUs by the ML model and then were re‐analyzed for robustness. Plans with ML predicted spots were less robust than the original clinical plans. In the APBI plan, dosimetric changes to the left lung and heart were not clinically relevant. In the ependymoma plan, the hot spot in the brainstem decreased and the hot spot in the cervical cord increased. Despite these differences, after robustness analysis, both ML spot delivery error plans resulted in >95% of the CTV receiving >95% of the prescription dose. The presented workflow has the potential benefit of including realistic spots information for plan quality checks in IMPT. This work demonstrates that in the two example plans, the plans were still robust when accounting for spot delivery errors as predicted by the ML model.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3