Thoracic motion‐compensated cone‐beam computed tomography in under 20 seconds on a fast‐rotating linac: A simulation study

Author:

Blake Samuel J.1,Dillon Owen1,Byrne Hilary L.1,O'Brien Ricky T.12

Affiliation:

1. ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia

2. Medical Radiations, School of Health and Biomedical Sciences RMIT University Bundoora Victoria Australia

Abstract

AbstractBackgroundRapid kV cone‐beam computed tomography (CBCT) scans are achievable in under 20 s on select linear accelerator systems to generate volumetric images in three dimensions (3D). Daily pre‐treatment four‐dimensional CBCT (4DCBCT) is recommended in image‐guided lung radiotherapy to mitigate the detrimental effects of respiratory motion on treatment quality.PurposeTo demonstrate the potential for thoracic 4DCBCT reconstruction using projection data that was simulated using a clinical rapid 3DCBCT acquisition protocol.MethodsWe simulated conventional (1320 projections over 4 min) and rapid (491 projections over 16.6 s) CBCT acquisitions using 4D computed tomography (CT) volumes of 14 lung cancer patients. Conventional acquisition data were reconstructed using the 4D Feldkamp‐Davis‐Kress (FDK) algorithm. Rapid acquisition data were reconstructed using 3DFDK, 4DFDK, and Motion‐Compensated FDK (MCFDK). Image quality was evaluated using Contrast‐to‐Noise Ratio (CNR), Tissue Interface Width (TIW), Root‐Mean‐Square Error (RMSE), and Structural SIMilarity (SSIM).ResultsThe conventional acquisition 4DFDK reconstructions had median phase averaged CNR, TIW, RMSE, and SSIM of 2.96, 8.02 mm, 83.5, and 0.54, respectively. The rapid acquisition 3DFDK reconstructions had median CNR, TIW, RMSE, and SSIM of 2.99, 13.6 mm, 112, and 0.44 respectively. The rapid acquisition MCFDK reconstructions had median phase averaged CNR, TIW, RMSE, and SSIM of 2.98, 10.2 mm, 103, and 0.46, respectively. Rapid acquisition 4DFDK reconstruction quality was insufficient for any practical use due to sparse angular projection sampling.ConclusionsResults suggest that 4D motion‐compensated reconstruction of rapid acquisition thoracic CBCT data are feasible with image quality approaching conventional acquisition CBCT data reconstructed using standard 4DFDK.

Funder

Cancer Australia

National Health and Medical Research Council

NSW Health

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3