Parametric delineation uncertainties contouring (PDUC) modeling on CT scans of prostate cancer patients

Author:

Ly Vi12,Liu Lizhong2,Cardenas Carlos1,Maroongroge Sean1,De Brian1,Basha Daniel El1,Court Laurence1,Luo Xi2

Affiliation:

1. Division of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston Texas USA

2. Department of Biostatistics and Data Science University of Texas Health Science Center School of Public Health Houston Texas USA

Abstract

AbstractPurposeVariability in contouring contributes to large variations in radiation therapy planning and treatment outcomes. The development and testing of tools to automatically detect contouring errors require a source of contours that includes well‐understood and realistic errors. The purpose of this work was to develop a simulation algorithm that intentionally injects errors of varying magnitudes into clinically accepted contours and produces realistic contours with different levels of variability.MethodsWe used a dataset of CT scans from 14 prostate cancer patients with clinician‐drawn contours of the regions of interest (ROI) of the prostate, bladder, and rectum. Using our newly developed Parametric Delineation Uncertainties Contouring (PDUC) model, we automatically generated alternative, realistic contours. The PDUC model consists of the contrast‐based DU generator and a 3D smoothing layer. The DU generator transforms contours (deformation, contraction, and/or expansion) as a function of image contrast. The generated contours undergo 3D smoothing to obtain a realistic look. After model building, the first batch of auto‐generated contours was reviewed. Editing feedback from the reviews was then used in a filtering model for the auto‐selection of clinically acceptable (minor‐editing) DU contours.ResultsOverall, C values of 5 and 50 consistently produced high proportions of minor‐editing contours across all ROI compared to the other C values (0.936 0.111 and 0.552 0.228, respectively). The model performed best on the bladder, which had the highest proportion of minor‐editing contours (0.606) of the three ROI. In addition, the classification AUC for the filtering model across all three ROI is 0.724 0.109.DiscussionThe proposed methodology and subsequent results are promising and could have a great impact on treatment planning by generating mathematically simulated alternative structures that are clinically relevant and realistic enough (i.e., similar to clinician‐drawn contours) to be used in quality control of radiation therapy.

Funder

National Institutes of Health

Varian Medical Systems

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3