A formalism and methodology for measurement and control of LINAC isocenter

Author:

Zacharopoulos Nicholas G.1,Fenyes David A.1

Affiliation:

1. Aktina Medical Corp. Congers New York USA

Abstract

AbstractBackground and PurposeDespite the acknowledged need for a stable reference point for LINAC isocenter quality assurance (QA), no standard for such a reference point has been established. This paper introduces a practical and robust technique for measuring and tuning LINAC isocenter within a stable reference frame based on the collimator axes of rotation.MethodsWe develop a framework based on physical isocenter, a refinement of the approach by Skworcow et al. The physical isocenter provides a relatively stable, first principles spatial point from which other LINAC parameters can be referenced. An optical tracking system was used to measure the collimator axes with high precision and an isocenter cost function was implemented to ensure a unique isocenter location. The same optical tracking system was used to (a) align the couch axis to the physical isocenter, (b) align the radiation beam to the collimator axes, and (c) position a marker precisely at the physical isocenter to demonstrate the effectiveness of the approach.ResultsThe framework was successfully demonstrated on an Elekta LINAC. The physical isocenter was shown to be repeatable with a standard deviation of 0.03 mm for the position and 0.03 mm for the radius. The couch axis was aligned to physical isocenter within 0.07 mm. The average collimator to beam axis distance before beam alignment was 0.19 and 0.10 mm after. All these steps were performed within 3 h, showing that the method is efficient when applied to isocenter optimization. The time required to measure physical isocenter and guide a marker to it for day‐to‐day isocenter QA was under 10 min.ConclusionsWe have presented a modular, practical framework for isocenter characterization and optimization based on physical isocenter, which is a stable and fixed reference point.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3