Impact of CT scan parameters on deformable image registration accuracy using deformable thorax phantom

Author:

Ikeda Ryutaro12,Kadoya Noriyuki1,Nakajima Yujiro3,Ishii Shin2,Shibu Takayuki2,Jingu Keiichi1

Affiliation:

1. Department of Radiation Oncology Tohoku University Graduate School of Medicine Sendai Japan

2. Department of Radiology Japanese Red Cross Ishinomaki Hospital Ishinomaki Japan

3. Department of Radiological Science Komazawa University Tokyo Japan

Abstract

AbstractThe purpose of this study was to evaluate the deformable image registration (DIR) accuracy using various CT scan parameters with deformable thorax phantom.Our developed deformable thorax phantom (Dephan, Chiyoda Technol Corp, Tokyo, Japan) was used. The phantom consists of a base phantom, an inner phantom, and a motor‐derived piston. The base phantom is an acrylic cylinder phantom with a diameter of 180 mm, which simulates the chest wall. The inner phantom consists of deformable, 20 mm thick disk‐shaped sponges with 48 Lucite beads and 48 nylon cross‐wires which simulate the vascular and bronchial bifurcations of the lung. Peak‐exhale and peak‐inhale images of the deformable phantom were acquired using a CT scanner (Aquilion LB, TOSHIBA). To evaluate the impact of CT scan parameters on DIR accuracy, we used the four tube voltages (80, 100, 120, and 135 kV) and six reconstruction algorithms (FC11, FC13, FC15, FC41, FC44, and FC52). Intensity‐based DIR was performed between the two images using MIM Maestro (MIM software, Cleveland, USA). Fiducial markers (beads and cross‐wires) based target registration error (TRE) was used for quantitative evaluation of DIR.In case with different tube voltages, the range of average TRE were 4.44–5.69 mm (reconstruction algorithm: FC13). In case with different reconstruction algorithms, the range of average TRE were 4.26–4.59 mm (tube voltage: 120 kV). The TRE were differed by up to 3.0 mm (3.96–6.96 mm) depending on the combination of tube voltage and reconstruction algorithm.Our result indicated that CT scan parameters had moderate impact of TRE, especially for reconstruction algorithms for the deformable thorax phantom.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3