Estimating size specific dose estimate from computed tomography radiograph localizer with radiation risk assessment

Author:

Burton Christiane Sarah1,Al‐Ward Shahad2

Affiliation:

1. Department of Diagnostic Imaging St Jude Children's Research Hospital Memphis Tennessee USA

2. Department of Radiation Oncology St Jude Children's Research Hospital Memphis Tennessee USA

Abstract

AbstractBackgroundQuantifying radiation burden is necessary for optimizing imaging protocols. The normalized dose coefficient (NDC) is determined from the water‐equivalent diameter (WED) and is used to scale the CTDIvol based on body habitus to determine the size specific dose estimate (SSDE). In this study we determine the SSDE prior to the CT scan and how sensitive the SSDE from WED is to the lifetime attributable risk (LAR) from BEIR VII.MethodFor calibration, phantom images are used to relate the mean pixel values along a profile () of the CT localizer to the water‐equivalent area (AW) of the CT axial scan at the same z‐location. Images of the CTDIvol phantoms (32 cm, 16 cm, and ∼1 cm) and ACR phantom (Gammex 464) were acquired on four scanners. The relationship between the AW and was used to calculate the WED from the CT localizer for patient scans. A total of 790 CT examinations of the chest and abdominopelvic regions were used in this study. The effective diameter (ED) was calculated from the CT localizer. The LAR was calculated based on the patient chest and abdomen using the National Cancer Institute Dosimetry System for Computed Tomography (NCICT). The radiation sensitivity index (RSI) and risk differentiability index (RDI) were calculated for SSDE and CTDIvol.ResultsThe WED from CT localizers and CT axials scans show good correlation (R2 = 0.96) with the maximum percentage difference being 13.45%. The NDC from WED correlates poorly with LAR for lungs (R2 = 0.18) and stomach (R2 = 0.19), however that is the best correlation.ConclusionThe SSDE can be determined within 20% as recommended by the report of AAPM TG 220. The CTDIvol and SSDE are not good surrogates for radiation risk, however the sensitivity for SSDE improves when using WED instead of ED.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3