Unveiling the impact of DNA methylation machinery: Dnmt1 and Dnmt3a in orchestrating oocyte development and cellular homeostasis

Author:

Uysal Fatma1ORCID,Sukur Gozde2,Bozdemir Nazlican1,Cinar Ozgur2ORCID

Affiliation:

1. Department of Histology and Embryology Ankara Medipol University School of Medicine Ankara Turkey

2. Department of Histology and Embryology Ankara University School of Medicine Ankara Turkey

Abstract

SummaryDNA methylation can be considered the most prominent in controlling the gene expression responsible for the balance between cell proliferation and cell death. In this study, we aimed to analyze the distinct contributions of Dnmt1 and Dnmt3a enzymes in oocyte maturation, survival, autophagy, reactive oxygen species (ROS) production, and compensation capacity of Dnmt3b and Dnmt3l enzymes in mouse oocytes. Following confirming the suppression of Dnmt1or Dnmt3a through siRNA application, the assessment involved immunofluorescence staining for Dnmts, 5mC, p62, and ROS levels. Cell death rates showed a noticeable increase while oocyte maturation rates exhibited significant reduction. Global DNA methylation showed a decline, concomitant with elevated p62 and ROS levels upon Dnmt1 or Dnmt3a knockdown. Remarkably, silencing of Dnmt1 led to an upsurge in Dnmt3a expression, whereas Dnmt3a knockdown triggered an increase in Dnmt1 levels. Furthermore, Dnmt3l expression exhibited a notable decrease after silencing of either Dnmt1 or Dnmt3a, while Dnmt3b levels remained comparable between control and siRNA‐treated groups. Collectively, this study underscores the pivotal roles of Dnmt1 and Dnmt3a in orchestrating various facets of oocyte development, encompassing maturation, survival, autophagy, and ROS production. These findings offer valuable insights into the intricate regulatory network governed by DNA methylation machinery within the context of oocyte physiology.

Publisher

Wiley

Subject

Cell Biology,Endocrinology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3