WELL: Applying bug detectors to bug localization via weakly supervised learning

Author:

Zhang Huangzhao1ORCID,Li Zhuo1ORCID,Li Jia1,Jin Zhi1,Li Ge1

Affiliation:

1. Key Laboratory of High Confidence Software Technologies Peking University Beijing China

Abstract

AbstractBug localization, which is used to help programmers identify the location of bugs in source code, is an essential task in software development. Researchers have already made efforts to harness the powerful deep learning (DL) techniques to automate it. However, training bug localization model is usually challenging because it requires a large quantity of data labeled with the bug's exact location, which is difficult and time‐consuming to collect. By contrast, obtaining bug detection data with binary labels of whether there is a bug in the source code is much simpler. This paper proposes a WEakly supervised bug LocaLization (WELL) method, which only uses the bug detection data with binary labels to train a bug localization model. With CodeBERT finetuned on the buggy‐or‐not binary labeled data, WELL can address bug localization in a weakly supervised manner. The evaluations on three method‐level synthetic datasets and one file‐level real‐world dataset show that WELL is significantly better than the existing state‐of‐the‐art model in typical bug localization tasks such as variable misuse and other bugs.

Publisher

Wiley

Reference57 articles.

1. MouL LiG ZhangL WangT JinZ.Convolutional neural networks over tree structures for programming language processing. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence February 12‐17 2016 Phoenix Arizona USASchuurmansD WellmanMP eds.AAAI Press;2016:1287‐1293.

2. ZhangJ WangX ZhangH SunH WangK LiuX.A novel neural source code representation based on abstract syntax tree. In: Proceedings of the 41st International Conference on Software Engineering ICSE 2019 Montreal QC Canada May 25‐31 2019AtleeJM BultanT WhittleJ eds.IEEE / ACM;2019:783‐794.

3. YuH LamW ChenL LiG XieT WangQ.Neural detection of semantic code clones via tree‐based convolution. In: Proceedings of the 27th International Conference on Program Comprehension ICPC 2019 Montreal QC Canada May 25‐31 2019GuéhéneucY‐G KhomhF SarroF eds.IEEE / ACM;2019:70‐80.

4. WangW LiG MaB XiaX JinZ.Detecting code clones with graph neural network and flow‐augmented abstract syntax tree. In: 27th IEEE International Conference on Software Analysis Evolution and Reengineering SANER 2020 London ON Canada February 18‐21 2020KontogiannisK KhomhF ChatzigeorgiouA FokaefsM‐E ZhouM eds.IEEE;2020:261‐271.

5. AllamanisM PengH SuttonCA.A convolutional attention network for extreme summarization of source code. In: Proceedings of the 33nd International Conference on Machine Learning ICML 2016 New York City NY USA June 19‐24 2016BalcanM‐F WeinbergerKQ eds. JMLR Workshop and Conference Proceedings vol. 48.JMLR.org;2016:2091‐2100.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3